Перевод: с английского на все языки

со всех языков на английский

consulting engineering firm

  • 1 consulting engineering firm

    English-Russian base dictionary > consulting engineering firm

  • 2 consulting engineering firm

    Универсальный англо-русский словарь > consulting engineering firm

  • 3 consulting engineering firm

    Англо-русский экономический словарь > consulting engineering firm

  • 4 consulting engineering firm

    English-russian dctionary of contemporary Economics > consulting engineering firm

  • 5 consulting engineering firm

    English-russian dctionary of diplomacy > consulting engineering firm

  • 6 firm

    n

    - accountancy firm
    - accounting firm
    - accredited brokerage firm
    - affiliated firm
    - agency firm
    - auditing firm
    - auditor firm
    - banking firm
    - bankrupt firm
    - blue chip firm
    - broker's firm
    - brokerage firm
    - business firm
    - civil engineering firm
    - commercial firm
    - competing firm
    - competitive firm
    - competitor firm
    - consultancy firm
    - consultation firm
    - consulting firm
    - consulting engineering firm
    - contracting firm
    - correspondent firm
    - dealer firm
    - distressed firm
    - engineering firm
    - entrant firm
    - executive search firm
    - exempted firm
    - export firm
    - financial firm
    - financially troubled firm
    - foreign firm
    - forwarding firm
    - incorporated firm
    - individual firm
    - industrial firm
    - investment firm
    - investment advisory firm
    - investment banking firm
    - joint firm
    - joint commercial firm
    - large firm
    - law firm
    - leading firm
    - local firm
    - long firm
    - loss-making firm
    - mail order firm
    - major firm
    - marketing firm
    - member firm
    - moderate-sized firm
    - nonmember firm
    - offshore firm
    - outside firm
    - over-leveraged firm
    - participating firm
    - patent law firm
    - principal firm
    - private firm
    - prosperous firm
    - public accounting firm
    - purchasing firm
    - renowned firm
    - reputable firm
    - retail firm
    - rival firm
    - search firm
    - small firm
    - solvent firm
    - specialized firm
    - start-up firm
    - state firm
    - state-owned firm
    - stockbroker firm
    - subsidiary firm
    - target firm
    - trade firm
    - trading firm
    - turnaround firm
    - universal firm
    - wholesale firm
    - close down a firm
    - cooperate with a firm
    - direct a firm
    - dissolve a firm
    - establish a firm
    - found a firm
    - handle a firm
    - keep a firm afloat
    - liquidate a firm
    - manage a firm
    - operate a firm
    - register a firm
    - represent a firm
    - run a firm
    - set up a firm
    - turn around a firm
    - wind up a firm
    - wipe out a firm

    English-russian dctionary of contemporary Economics > firm

  • 7 firm

    English-russian dctionary of diplomacy > firm

  • 8 firm

    Англо-русский словарь по экономике и финансам > firm

  • 9 Donkin, Bryan III

    [br]
    b. 29 August 1835 London, England
    d. 4 March 1902 Brussels, Belgium
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the eldest son of John Donkin (1802–54) and grandson of Bryan Donkin I (1768–1855). He was educated at University College, London, and at the Ecole Centrale des Arts et Métiers in Paris, and then served an apprenticeship in the firm established by his grandfather. He assisted his uncle, Bryan Donkin II (1809–93), in setting up paper mills at St Petersburg. He became a partner in the Donkin firm in 1868 and Chairman in 1889, and retained this position after the amalgamation with Clench \& Co. of Chesterfield in 1900. Bryan Donkin was one of the first engineers to carry out scientific tests on steam engines and boilers, the results of his experiments being reported in many papers to the engineering institutions. In the 1890s his interests extended to the internal-combustion engine and he translated Rudolf Diesel's book Theory and Construction of a Rational Heat Motor. He was a frequent contributor to the weekly journal The Engineer. He was a member of the Institution of Civil Engineers and of the Institution of Mechanical Engineers, as well as of many other societies, including the Royal Institution, the American Society of Mechanical Engineers, the Société Industrielle de Mulhouse and the Verein Deutscher Ingenieure. In his experimental work he often collaborated with others, notably Professor A.B.W.Kennedy (1847–1928), with whom he was also associated in the consulting engineering firm of Kennedy \& Donkin.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers 1901. Institution of Civil Engineers, Telford premiums 1889, 1891; Watt Medal 1894; Manby premium 1896.
    Bibliography
    1894, Gas, Oil and Air Engines, London.
    1896, with A.B.W.Kennedy, Experiments on Steam Boilers, London. 1898, Heat Efficiency of Steam Boilers, London.
    RTS

    Biographical history of technology > Donkin, Bryan III

  • 10 Cubitt, William

    [br]
    b. 1785 Dilham, Norfolk, England
    d. 13 October 1861 Clapham Common, Surrey, England
    [br]
    English civil engineer and contractor.
    [br]
    The son of a miller, he received a rudimentary education in the village school. At an early age he was helping his father in the mill, and in 1800 he was apprenticed to a cabinet maker. After four years he returned to work with his father, but, preferring to leave the parental home, he not long afterwards joined a firm of agricultural-machinery makers in Swanton in Norfolk. There he acquired a reputation for making accurate patterns for the iron caster and demonstrated a talent for mechanical invention, patenting a self-regulating windmill sail in 1807. He then set up on his own as a millwright, but he found he could better himself by joining the engineering works of Ransomes of Ipswich in 1812. He was soon appointed their Chief Engineer, and after nine years he became a partner in the firm until he moved to London in 1826. Around 1818 he invented the treadmill, with the aim of putting prisoners to useful work in grinding corn and other applications. It was rapidly adopted by the principal prisons, more as a means of punishment than an instrument of useful work.
    From 1814 Cubitt had been gaining experience in civil engineering, and upon his removal to London his career in this field began to take off. He was engaged on many canal-building projects, including the Oxford and Liverpool Junction canals. He accomplished some notable dock works, such as the Bute docks at Cardiff, the Middlesborough docks and the coal drops on the river Tees. He improved navigation on the river Severn and compiled valuable reports on a number of other leading rivers.
    The railway construction boom of the 1840s provided him with fresh opportunities. He engineered the South Eastern Railway (SER) with its daringly constructed line below the cliffs between Folkestone and Dover; the railway was completed in 1843, using massive charges of explosive to blast a way through the cliffs. Cubitt was Consulting Engineer to the Great Northern Railway and tried, with less than his usual success, to get the atmospheric system to work on the Croydon Railway.
    When the SER began a steamer service between Folkestone and Boulogne, Cubitt was engaged to improve the port facilities there and went on to act as Consulting Engineer to the Boulogne and Amiens Railway. Other commissions on the European continent included surveying the line between Paris and Lyons, advising the Hanoverian government on the harbour and docks at Hamburg and directing the water-supply works for Berlin.
    Cubitt was actively involved in the erection of the Crystal Palace for the Great Exhibition of 1851; in recognition of this work Queen Victoria knighted him at Windsor Castle on 23 December 1851.
    Cubitt's son Joseph (1811–72) was also a notable civil engineer, with many railway and harbour works to his credit.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. FRS 1830. President, Institution of Civil Engineers 1850 and 1851.
    Further Reading
    LRD

    Biographical history of technology > Cubitt, William

  • 11 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 12 Norton, Charles Hotchkiss

    [br]
    b. 23 November 1851 Plainville, Connecticut, USA
    d. 27 October 1942 Plainville, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool designer.
    [br]
    After an elementary education at the public schools of Plainville and Thomaston, Connecticut, Charles H.Norton started work in 1866 at the Seth Thomas Clock Company in Thomaston. He was soon promoted to machinist, and further progress led to his successive appointments as Foreman, Superintendent of Machinery and Manager of the department making tower clocks. He designed many public clocks.
    In 1886 he obtained a position as Assistant Engineer with the Brown \& Sharpe Manufacturing Company at Providence, Rhode Island, and was engaged in redesigning their universal grinding machine to give it more rigidity and make it more suitable for use as a production machine. In 1890 he left to become a partner in a newly established firm, Leland, Faulconer \& Norton Company at Detroit, Michigan, designing and building machine tools. He withdrew from this firm in 1895 and practised as a consulting mechanical engineer for a short time before returning to Brown \& Sharpe in 1896. There he designed a grinding machine incorporating larger and wider grinding wheels so that heavier cuts could be made to meet the needs of the mass-production industries, especially the automobile industry. This required a heavier and more rigid machine and greater power, but these ideas were not welcomed at Brown \& Sharpe and in 1900 Norton left to found the Norton Grinding Company in Worcester, Massachusetts. Here he was able to develop heavy-production grinding machines, including special machines for grinding crank-shafts and camshafts for the automobile industry.
    In setting up the Norton Grinding Company, Charles H.Norton received financial support from members of the Norton Emery Wheel Company (also of Worcester and known after 1906 as the Norton Company), but he was not related to the founder of that company. The two firms were completely independent until 1919 when they were merged. From that time Charles H.Norton served as Chief Engineer of the machinery division of the Norton Company, until 1934 when he became their Consulting Engineer.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia, John Scott Medal 1925.
    Bibliography
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass, (contains biographical information and details of the machines designed by Norton).
    RTS

    Biographical history of technology > Norton, Charles Hotchkiss

  • 13 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 14 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 15 Issigonis, Sir Alexander Arnold Constantine (Alec)

    [br]
    b. 18 November 1906 Smyrna (now Izmir), Turkey
    d. 2 October 1988 Birmingham, England
    [br]
    British automobile designer whose work included the Morris Minor and the Mini series.
    [br]
    His father was of Greek descent but was a naturalized British subject in Turkey who ran a marine engineering business. After the First World War, the British in Turkey were evacuated by the Royal Navy, the Issigonis family among them. His father died en route in Malta, but the rest of the family arrived in England in 1922. Alec studied engineering at Battersea Polytechnic for three years and in 1928 was employed as a draughtsman by a firm of consulting engineers in Victoria Street who were working on a form of automatic transmission. He had occasion to travel frequently in the Midlands at this time and visited many factories in the automobile industry. He was offered a job in the drawing office at Humber and lived for a couple of years in Kenilworth. While there he met Robert Boyle, Chief Engineer of Morris Motors (see Morris, William Richard), who offered him a job at Cowley. There he worked at first on the design of independent front suspension. At Morris Motors, he designed the Morris Minor, which entered production in 1948 and continued to be manufactured until 1971. Issigonis disliked mergers, and after the merger of Morris with Austin to form the British Motor Corporation (BMC) he left to join Alvis in 1952. The car he designed there, a V8 saloon, was built as a prototype but was never put into production. Following his return to BMC to become Technical Director in 1955, his most celebrated design was the Mini series, which entered production in 1959. This was a radically new concept: it was unique for its combination of a transversely mounted engine in unit with the gearbox, front wheel drive and rubber suspension system. This suspension system, designed in cooperation with Alex Moulton, was also a fundamental innovation, developed from the system designed by Moulton for the earlier Alvis prototype. Issigonis remained as Technical Director of BMC until his retirement.
    [br]
    Further Reading
    Peter King, 1989, The Motor Men. Pioneers of the British Motor Industry, London: Quiller Press.
    IMcN

    Biographical history of technology > Issigonis, Sir Alexander Arnold Constantine (Alec)

  • 16 Pratt, Francis Ashbury

    [br]
    b. 15 February 1827 Woodstock, Vermont, USA
    d. 10 February 1902 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Francis A.Pratt served an apprenticeship as a machinist with Warren Aldrich, and on completing it in 1848 he entered the Gloucester Machine Works as a journeyman machinist. From 1852 to 1854 he worked at the Colt Armory in Hartford, Connecticut, where he met his future partner, Amos Whitney. He then became Superintendent of the Phoenix Iron Works, also at Hartford and run by George S.Lincoln \& Company. While there he designed the well-known "Lincoln" miller, which was first produced in 1855. This was a development of the milling machine built by Robbins \& Lawrence and designed by F.W. Howe, and incorporated a screw drive for the table instead of the rack and pinion used in the earlier machine.
    Whitney also moved to the Phoenix Iron Works, and in 1860 the two men started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, F.A.Pratt being elected President. The firm specialized in making machine tools and tools particularly for the armament industry. In the 1870s Pratt made no less than ten trips to Europe gaining orders for equipping armouries in many different countries. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm. Pratt remained President of the company until 1898, after which he served as their Consulting Engineer for a short time before retiring from professional life. He was granted a number of patents relating to machine tools. He was a founder member of the American Society of Mechanical Engineers in 1880 and was elected a vice-president in 1881. He was an alderman of the city of Hartford.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1881.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Pratt, Francis Ashbury

  • 17 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

См. также в других словарях:

  • AVL (Engineering Firm) — Infobox Company company type = Private company name = AVL company foundation = 1948 location = headquarters in Graz, Austria; facilities in 28 countries worldwide key people = Prof. Dr. h.c. Helmut List, Chairman CEO num employees = 4100… …   Wikipedia

  • firm — {{Roman}}I.{{/Roman}} noun ADJECTIVE ▪ big, large, major ▪ medium sized ▪ small ▪ well known ▪ …   Collocations dictionary

  • Mannvit Engineering — Type Private Limited Company Industry Engineering, renewable energy, sciences and project delivery Founded Iceland (1963) …   Wikipedia

  • Keen Engineering — Infobox Company company name = Keen Engineering Co. Ltd. company company type = Private foundation = 1960 location = North Vancouver, British Columbia industry = Construction Services products = Engineering Services num employees = 275 (2005)… …   Wikipedia

  • Engineering ethics — is the field of applied ethics which examines and sets standards for engineers obligations to the public, their clients, employers and the profession. This article addresses the subject for both professional engineers and other… …   Wikipedia

  • Columbia School of Engineering and Applied Science — School of Engineering and Applied Science redirects here. For other uses, see School of Engineering and Applied Science (disambiguation). Fu Foundation School of Engineering and Applied Science Established …   Wikipedia

  • Management consulting — indicates both the industry and practice of helping organizations improve their performance primarily through the analysis of existing organizational problems and development of plans for improvement. Organizations hire the services of management …   Wikipedia

  • Hyder Consulting — Infobox Company company name = Hyder Consulting plc company company type = Public limited company foundation = As Freeman Fox, 1857 location = London UK 50 Offices Worldwide key people = Tim Wade, CEO industry = Engineering, Environmental,… …   Wikipedia

  • Burns & McDonnell Engineering — Burns McDonnell is an engineering design firm headquartered in Kansas City, Missouri.Burns McDonnell is one of the leading design firms in the United States. The company provides engineering, architecture, construction, environmental and… …   Wikipedia

  • Dessau (engineering) — Dessau Industry Engineering Construction Services Founded 1957 Headquarters Montreal, Quebec, Canada Key people …   Wikipedia

  • Synovate Business Consulting — Infobox Company company name = Synovate Business Consulting company tag line = Research Reinvented company type = Business practice foundation = 1994 as AMI consulting location = [Singapore] key people = Peter Snell, CEO industry = Business… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»